Abstract

Nanosheets, nanobelts, and ultralong nanobelt arrays with honeycomb-like micropatterns of ZnSe were synthesized via a solvothermal reaction of Zn with Se and KBH(4) in ethylenediamine at 200 degrees C for 24 h and subsequent annealing. The control over these nanostructures with different morphologies was achieved by adjusting the KBH(4)/Se molar ratio. The role of KBH(4) in the formation of ZnSe(en)(0.5) nanobelts with different length-to-width ratios was investigated, and a possible mechanism was also proposed to account for the growth and conversion of these precursor nanostructures into ZnSe nanostructures. Current-voltage behaviors of the ultralong nanobelt arrays with honeycomb-like micropatterns were investigated. In addition, variable-aspect ratio ZnS nanosheets and nanowires were also synthesized by adjusting the KBH(4)/thiourea molar ratio in the Zn-thiourea-KBH(4)-ethylenediamine solvothermal system. The results suggest that this method may be employed for the controllable synthesis of other II-VI semiconductor nanostructures such as ZnTe, NiS, MnS, and so forth and provides opportunities for both fundamental research and technological applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call