Abstract

Interfacial polymerization of uniform template-free nanostructures is very challenging since many factors play determinant roles in the final structure of the resulting nanoassemblies. Here, we present a single oxidative coupling method for the synthesis of different nanoshapes by addition or substitution of a methyl group on aniline monomers to freely alter the mechanism of monomer-to-polymer conversion. Well-defined nanotubes, nanohollows, and solid nanospheres are obtained from aniline, N-methylaniline, and 2-methylaniline polymerizations, respectively. We found that the extent of hydrophobicity and protonation under mild acidic conditions determines the monomers’ arrangement in micelle or droplet form, reactivity, and nucleation mechanism. These can subsequently affect the final morphology through a fusion process to form tubular structures, external flux of monomers to form nanohollows, and intradroplet oxidation to form solid nanospheres. Altered biological responses, such as cytocompatibility, redo...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.