Abstract

Scanning tunneling microscopy (STM) is today the most powerful and versatile tool available for imaging and manipulating single molecules on surfaces. Here, we explore its ultimate limit by demonstrating the possibility of controlling sequential di-dehydrogenation of single Co-Salen molecules sublimated on Cu. In particular, we are able to explore the final products of the ${\text{H}}_{2}$ dissociation as well as the intermediate state, in which only one H atom is separated from the molecule. This is achieved by low-temperature STM with the dissociation induced by either point spectroscopy or in the standard constant-current mode. Crucial for the interpretation of the data is our ability to perform state-of-the-art density-functional theory simulations of both topographic and spectroscopical STM images. This work demonstrates that STM combined with theory can give access to the atomic details of a chemical reaction even when the reaction products are completely unknown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.