Abstract
Prussian blue analogs (PBAs) are considered as efficient catalysts for energy-related applications due to their porous nanoscale architectures containing finely disseminated active sites. Their catalytic capability can be greatly boosted by the rational design and construction of complex PBA hybrid nanostructures. However, present-day structure engineering inevitably involves additional etchant or procedure. Herein, a facile, yet controllable one-pot self-assembly strategy is introduced to prepare hierarchical core-shell polymetallic PBAs (featuring bimetallic FeMn PBAs cores and CoNi PBAs shells) with hollow nano-cages/solid nano-cube architectures. The detailed characterization of material morphology/composition, assisted with theoretical simulations, reveals the underlying formation mechanism where the key factor is the control of the nucleation rate via the use of chelating agent (citrates) and reaction kinetics. The resulting FeMn@CoNi-H compound is found to accelerate the oxygen evolution reaction activity with a low overpotential (236mV at a current density 10mA cm-2 ) as well as a low Tafel slope (58.4mV dec-1 ). Such an impressive performance is endowed by the rational compositional and structural design with optimized electronic structures as well as an increase in exposed active sites. This work provides a robust, cost-effective pathway that enables chemical and morphological control in creating high-performance catalysts for water electrolysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.