Abstract

AbstractFabrication process that enables selective growth of vertically oriented zinc oxide (ZnO) nanowires (NWs) via chemical vapor deposition method and mask‐free patterning approach is reported. It is shown that synthesis of high‐quality ZnO nanowires in various architectures is achievable by optimizing the growth conditions and by precise patterning of catalytic ink precursors. Parallel direct‐write patterning method is utilized to fabricate arrays of different architectures on Si/SiO2 substrates and directly on devices at preselected locations. The production of high‐quality, crystalline ZnO NWs is demonstrated using aqueous iron catalytic inks. The composition of the ink and the lateral size of the patterns deposited on substrates are shown to affect the resulting nanowires and thus, allowing to control the geometry (length and diameter) of the individual ZnO NWs in the patterned assemblies. The results indicate that our protocols are tailored to the fabrication of ZnO NWs with specific surface geometries and interface functionalities for variety of targeted device applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.