Abstract

Therapeutic protein delivery directly to the eye is a promising strategy to treat retinal degeneration; yet, the high risks of local drug overdose and cataracts associated with bolus injection have limited progress, requiring the development of sustained protein delivery strategies. Since the vitreous humor itself is a gel, hydrogel-based release systems are a sensible solution for sustained intravitreal protein delivery. Using ciliary neurotrophic factor (CNTF) as a model protein for ocular treatment, we investigated the use of an intravitreal, affinity-based release system for protein delivery. To sustain CNTF release, we took advantage of the affinity between Src homology 3 (SH3) and its peptide binding partners: CNTF was expressed as a fusion protein with SH3, and a thermogel of hyaluronan and methylcellulose (HAMC) was modified with SH3 binding peptides. Using a mathematical model, the hydrogel composition was successfully designed to release CNTF-SH3 over 7 days. The stability and bioactivity of the released protein were similar to those of commercial CNTF. Intravitreal injections of the bioengineered thermogel showed successful delivery of CNTF-SH3 to the mouse retina, with expected transient downregulation of phototransduction genes (e.g., rhodopsin, S-opsin, M-opsin, Gnat 1 and 2), upregulation of STAT1 and STAT3 expression, and upregulation of STAT3 phosphorylation. This constitutes the first demonstration of intravitreal protein release from a hydrogel. Immunohistochemical analysis of the retinal tissues of injected eyes confirmed the biocompatibility of the delivery vehicle, paving the way towards new intravitreal protein delivery strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.