Abstract

Epidemiological studies show that a significant fraction of the global population presents low levels of vitamin D3. In order to address this problem, one way to administer the vitamin is to incorporate it in novel drug delivery systems, such as transdermal devices. A possible substance for this purpose is cellulose, which has a long history of use in the health area. However, the application of nanostructured cellulose membranes, as local drug delivery systems, remains a challenge. To develop a crystalline nanocellulose membrane as a new tool for the release of vitamin D3. A new nanostructured membrane containing nanocellulose extracted from cotton linter and vitamin D3 was produced using the “casting” technique. The membrane was characterized using high-resolution scanning electron microscopy (FEG-SEM) and Fourier transform infrared spectroscopy (FT-IR). The kinetics of vitamin release was quantified using molecular spectroscopy (UV–Vis). The FT-IR spectra showed the presence of all the active components in the membrane sample, without structural alterations or the formation of new bonds. The FEG-SEM images showed the presence of vitamin crystals on the surface and in the interior of the membrane. The release of vitamin D3 occurred in a sustained manner, obtaining 3029 IU mL−1 of vitamin D3 in 60 min. The findings demonstrated that the membrane could be used for the sustained release of vitamin D3. This new biomaterial has potential as a new model for vitamin supplementation in individuals with vitamin D3 deficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.