Abstract

For wound healing, angiogenesis is one of the main therapeutic factors for recovering the injured tissue. To address this issue, a combination of two different polymers, alginate (ALG) and hyaluronic acid (HA) in 80:20 ratio composition is used to optimize the bead system along with the 5 IU heparin (Hep) by crosslinking into calcium chloride (CaCl2). Encapsulation of Vascular endothelial growth factor (VEGF) in the bead system shows delayed cumulative release in phosphate buffer saline (PBS). For in vitro studies, calf pulmonary artery endothelial (CPAE) cells showed biocompatibility. ALG − HA/VEGF150 improves endothelial Vascular cell adhesion protein 1 (VCAM1) and endothelial nitric oxide synthase (eNOS) expression markers in CPAE cells. In vivo evaluation of the bead system shows around 68% of wound closure 2 weeks post-implantation in 8 mm punch wound models. The treatment group shows decreased epithelial gap between the ends of the wound and neo-epidermal regeneration. ALG − HA/VEGF150 induced significant vascularization, collagen type-1 (Col-1) and fibronectin (FN) development in the in vivo models after 2 weeks of the implantation. Hence, ALG − HA/VEGF150 beads can be used to promote wound healing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call