Abstract

A controlled release fertilizer system based on phosphate bound-carboxymethyl starch-graft-polyacrylamide (P-CMS-g-PAM) has been prepared in order to deliver the phosphate fertilizer to the plant at a constant rate thereby. This system aims to increase fertilizer phosphorus use efficiency (FPUE) and maintain a hydration level for the plant at the same time. Two types of starch phosphate monoesters were prepared using mono-ammonium (MAP) and di-ammonium phosphate (DAP). First, starch was converted to carboxymethyl starch and then was phosphorylated with mono-ammonium dihydrogen phosphate and di-ammonium dihydrogen phosphate. After phosphorylation, the samples were grafted with acrylamide in the presence of methylene bisacrylamide as a crosslinking agent. The prepared systems of P-CMS-g-PAM were differently characterized by Fourier transformer infrared (FT-IR), thermogravimetric analysis (TGA), scanning electron microscope (SEM) and phosphorous analysis. The swelling behavior was investigated. The kinetics of grafting reaction were also studied. The release behavior of phosphate bound was studied at pH 7 and 25 °C. The mechanism of the phosphate release from P-CMS-g-PAM was examined using the Korsmeyer-Peppas model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call