Abstract

Biodegradable hydrogels (FPBe-G) were synthesized by the photopolymerization of two precursors: FPBe, a fumurate-based unsaturated poly(ester amide) (UPEA), and poly(ethylene glycol) diacrylate (PEG-DA). Depending on the feed ratio of these two precursors, the resultant FPBe-G hydrogels showed different crosslinking levels of network structure, mesh sizes (ξ) and matrix morphology. When a lipophilic drug, paclitaxel, was preloaded into FPBe-G hydrogels, the two-month drug-release kinetics from FPBe-G hydrogels in both pure PBS buffer and α-chymotrypsin media were measured. The paclitaxel-preloaded FPBe-G hydrogels in a α-chymotrypsin solution had significantly faster drug release rate than the corresponding hydrogels in a pure PBS buffer due to an enzyme catalyzed biodegradation of FPBe-G hydrogels. Sustained paclitaxel releases over a two-month period without initial burst release were also achieved by using hydrogels having certain feed ratios of hydrogel precursors. These paclitaxel release data correlated well with the molecular mesh size (ξ), molecular weight between cross-links (M c) and matrix morphological structure of FPBe-G hydrogels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.