Abstract
The complications from surgery associated peritoneal adhesion can be alleviated by combination of physical isolation and pharmaceutical treatment. This work aims to develop thermo-sensitive hydrogel barrier by combining mitomycin C (MMC) with modified tempo oxidized nanocellulose (cTOCN) through EDC/NHS-chemical conjugation followed by integration with methyl cellulose (MC). The MMC was successfully combined with cTOCN and ensured controlled release of MMC from hydrogel throughout 14 days. Amount of MC (1.5, 2.5, 3.5% w/v) was proportional to gelation time and inversely proportional to degradation of hydrogel. The optimized hydrogel (C2.5T1M0.2) needed only 30 s for thermoreversible sol-gel (4℃-37℃) phenomenon and did not show in vitro fibroblast cells toxicity as well as ensured complete adhesion prevention efficacy, reperitonealization in rat side wall-cecal abrasion model. Overall, the developed C2.5T1M0.2 thermo-gel advances state-of-the-art in view of cytocompatibility, mechanical stability, optimum degradation, good injectability, sustain drug release from surgical sites, and satisfactory de novo anti-adhesion capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.