Abstract
Probiotics offer therapeutic benefits and have the potential to treat complex diseases, but their persistence at the target site is often required for effective treatment. Although probiotic persistence can be achieved by repeated delivery, no biomaterial that releases metabolically active probiotics in a sustained manner has been developed yet. This work demonstrates a generic mechanism where stiff probiotics encapsulated within relatively less stiff hydrogels proliferate and induce hydrogel fracture. This allows a zero-order release of probiotics which can be easily controlled by adjusting the properties of the encapsulating matrices. This generic mechanism is applicable for a wide range of probiotics with different synthetic matrices and has the potential to be used in the treatment of a broad range of diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.