Abstract

A number of anticancer drugs, such as doxorubicin (DOX), operate only after being transported into the nucleus of cancer cells. Thus it is essential for the drug carriers to effectively release the anticancer drugs into the cytoplasm of cancer cells and make them move to nucleus freely. Herein, a pH-responsive charge-reversal polyelectrolyte and integrin αⅤβ3 mono-antibody functionalized graphene oxide (GO) complex is constituted as a nanocarrier for targeted delivery and controlled release of DOX into cancer cells. The DOX loading and releasing in vitro demonstrates that this nanocarrier cannot only load DOX with high efficiency, but also effectively release it under mild acidic pH stimulation. Cellular toxicity assay, confocal laser scanning microscopy and flow cytometer analysis results together confirm that with the targeting nanocarrier, DOX can be selectively transported into the targeted cancer cells. Then they will be effectively released from the nanocarriers in cytoplasm and moved into the nucleus subsequently, stimulating by charge-reverse of the polyelectrolyte in acidic intracellular compartments. The effective delivery and release of the anticancer drugs into nucleus of the targeted cancer cells will lead to a high therapeutic efficiency. Hence, such a targeting nanocarrier prepared from GO and charge-reversal polyelectrolytes is likely to be an available candidate for targeted drug delivery in tumor therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.