Abstract

Controlled drug delivery could minimize side effects while maintaining a high local dose. Herein, a hydrogel carrier was prepared by forming dynamic imine bonds between gelatin and oxidized dextran (ODex) of different molecular weights (Mw=10, 70, and 150kDa). The morphology, thermal stability, rheology, mechanical properties, and swelling properties of the hydrogels and the controlled release of curcumin were characterized. When dextran with a higher Mw was used, the ODex contained more aldehyde groups, which led to a higher degree of cross-linking, considerably shorter gel time, decreased hydrogel porosity, and well-controlled release of curcumin. In addition, the cross-linked hydrogels exhibited not only high thermal stability but also excellent mechanical properties. However, because the matrix was hydrophilic, the swelling properties of the hydrogels were not significantly affected by the Mw of ODex. These observations suggest an approach for designing nutrient delivery carriers with improved controlled release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call