Abstract

It is critical to repair severed facial nerves, as lack of treatment may cause long-term motor and sensory impairments. Ciliary neurotrophic factor (CNTF) plays an important role in terms of enhancing nerve axon regrowth and maturation during peripheral nerve regeneration after injury. However, simple application of CNTF to the transected nerve site does not afford functional recovery, because it is rapidly flushed away by bodily fluids. The aim of the present study was the construction of a new, bioactive composite nerve graft facilitating persistent CNTF delivery to aid the reconstruction of facial nerve defects. The in vitro study showed that the bioactive nerve graft generated sustainable CNTF release for more than 25 days. The bioactive nerve graft was then transplanted into the injury sites of rat facial nerves. At 6 and 12 weeks post-transplantation, functional and histological analyses showed that the bioactive nerve graft featuring immobilized CNTF significantly enhanced nerve regeneration in terms of both axonal outgrowth and Schwann cell proliferation in the rat facial nerve gap model, compared to a collagen tube with adsorbed CNTF that initially released high levels of CNTF. The bioactive nerve graft may serve as novel, controlled bioactive release therapy for facial nerve regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.