Abstract
AbstractBerberine hydrochloride is a natural medicine with wide clinical application. In this article, berberine hydrochloride was entrapped into alginate microspheres via an emulsification/gelation method. The size distribution of the microspheres was determined by a laser particle sizer. Drug distribution within the microspheres was determined by confocal laser scanning microscopy. Those drug‐loaded microspheres were further entrapped into carboxymethyl chitosan (CMC) hydrogel to form a new drug‐delivery system (DDS). The surface morphology of the DDS was observed using metallographic microscopy and scanning electron microscopy (SEM). The compression strength of the DDSs with alginate microspheres was found significantly higher than that of the pure hydrogel. The drug‐release performances of the DDS in phosphate buffer solution (PBS, pH 7.4), saline solution (pH 6.3), and hydrochloric acid solution (HAS, pH 1.2) were also studied. Decay of the DDS in PBS within 72–80 h results in a faster release; however, the steady release in saline solution could last for all the testing period without cleavage of the DDS. In HAS, because of the shrinkage of the DDS, release is fast in the first period and remains steady later. The DDS exhibits prospective in controlled steady release of drugs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.