Abstract

The binding and detachment of carboxyl-modified gold nanoparticles from liposomes is used for controlled drug delivery. This study reveals that the binding and detachment of nanoparticles from liposomes depends on the degree of hydration of the liposomes. Liposomes with a lower hydration level undergo stronger electrostatic interactions with negatively charged gold nanoparticles, thus leading to a slower detachment of the carboxyl-modified gold nanoparticles under gastric conditions. Therefore, under gastric conditions, gold-nanoparticle-decorated dipalmitoylphosphatidylcholine (DPPC) liposomes exhibit an at least ten-times-slower drug release compared to gold-nanoparticle-decorated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes, although both liposomes in the bare state fail to pursue controlled release. Our study also reveals that one can modulate the drug-release rate by simply varying the concentration of nanoparticles. This study highlights a novel strategy for the controlled release of drug molecules from liposomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.