Abstract

The objectives of this investigation were to prepare microspheres of the anti-diabetic drug, metformin hydrochloride, using ethyl cellulose as the polymer and evaluate the encapsulation efficiency and release characteristics in vitro and in vivo; utilizing different microencapsulation techniques. Different proportions of polymer were used to obtain varying drug–polymer ratios. Physical properties, loading efficiency and dissolution rate were dependent on the method chosen for preparation and also on the drug-to-polymer ratio. The addition of surfactant during emulsification and petroleum ether in non-solvent addition process affected release of drug and also size distribution of microspheres. To investigate the type of mechanism that occurs, dissolution data were plotted according to different kinetic models. In vitro release studies show first order and Higuchi model release characteristics being exhibited. All the results were treated statistically to validate the findings. Significant differences in percentage yield, entrapment efficiency and sustaining capacity were seen with microspheres prepared by two different methods. In vivo studies in normal and hyperglycemic mice show faster glucose reduction with microspheres prepared by the evaporation method, whereas the release sustaining effect was more pronounced with microspheres prepared by the non-solvent addition method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call