Abstract

The recent study focusing on paper coated with microfibrillated cellulose (MFC) revealed the ability of such a structure to achieve a controlled release of molecules introduced into its nanoporous network. The present study examines this concept using a chlorhexidine digluconate-based (CHX) antibacterial solution. Various analyses were performed, optical microscopy, FE-SEM and AFM to underline the structure of the nanoporous MFC network. Release studies were conducted in an aqueous medium following two different protocols and antibacterial tests were done to evaluate the efficiency of the final materials obtained. MFC coating provided a slower and more progressive release of CHX. Indeed, papers impregnated with CHX were active for 18 days, whereas papers coated with CHX/MFC retained their antibacterial activity for 45 days. In parallel, similar tests were carried out using a model coating slurry, and although the rate of release of CHX was also slowed down, the quantities released were insufficient to confer any antibacterial activity. In conclusion, this study suggests that the use of MFC as a coating could be very promising since it allows a controlled and progressive release of molecules preserving long-term antibacterial activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.