Abstract

Hydrogen plays a pivotal role in carbon nanomaterials synthesis by arc plasma. However, the effect of hydrogen on morphological regulation of carbon nanomaterials has received little attention. In this paper, carbon nanomaterials synthesized under mixed H2/Ar, H2/N2, and Ar/N2 atmospheres with different ratios were investigated in detail to tackle the issue. Graphene, carbon nanocages, polyhedral graphite particles, amorphous carbon nanoballs, and carbon nanohorns underwent structural transformation as hydrogen content reduced. As a result of varying hydrogen concentration, the number of C-H bond sites at the edge of graphene islands differed, leading to the structural transformation of carbon nanomaterials originating from the formation of various types of precursors. Meanwhile, X-ray photoelectron spectroscopy results revealed that hydrogen impeded nitrogen doping because it tended to bond with electronegative nitrogen. Moreover, morphology control capability followed the order of H2 > N2 > Ar during the preparation of carbon nanomaterials through arc plasma under a mixed atmosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.