Abstract
In this work, controlled reduction of perovskites supported on Al2O3 was used to prepare thermally stable nanodispersed iron catalysts based on Fe0/La2O3/Al2O3. The perovskites composites LaFe0.90Mn0.08Mo0.02O3(25, 33 and 50 wt (%)) /Al2O3 and LaFe0.90Mn0.1O3(25 wt (%)) /Al2O3 were prepared and characterized by XRD, BET, TPR, SEM and Mössbauer spectroscopy. XRD for unsupported perovskite showed the formation of a single phase perovskite structure. The Mössbauer spectra of the perovskites were fitted with hyperfine field distribution model for the perovskite. Supported perovskites on Al2O3 showed a decrease of the hyperfine field in respect to unsupported perovskite, due to decrease of particle size and dispersion of the Fe3+ specimens on the support. Also showed broaden lines and relaxation effects due to the small particle size. To produce the Fe0 catalyst, the composite perovskite(25%)/Al2O3 was reduced with H2 at 900, 1000 and 1100 °C for 1 hour. XRD data indicated the formation of Fe0 catalyst with particles sizes of ca. 35 nm. The Mössbauer spectrum showed the formation of metallic iron and doublets corresponding to species of octahedric Fe2+ and Fe3+ sites dispersed on Al2O3. These catalysts showed improved stability towards sintering even upon treatment at 1000 and 1100 °C under H2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.