Abstract

In this work, we first screen print thin GO laminates on Kapton film and then chemically reduce to rGO with desired sheet resistance by controlling printing cycles and reduction time. The thin rGO laminates have a wide range of conductivity from 2.8 S m−1 up to 1.3×104 S m−1, exhibiting excellent consistency of electric performance even after 50000 times bending. Commonly used rGO reduction level characterization methods have been compared with the proposed sheet resistance method. It is revealed that the later has higher variation with reduction time, providing a new method for reduction monitoring of rGO. Benefiting from the tunability of its sheet resistance, the rGO laminate not only can be used in flexible electronic circuits as conductors or resistors, but also highly efficient to absorb microwave radiations with proper design. Therefore, a printed, three-layer, Jaumann structured microwave absorber has been designed, fabricated and characterised. The maximum microwave absorption rate is up to 99.9997% where the −10 dB fractional bandwidth is over 153%, which covers L, S and C bands. Moreover, the fabricated absorber can absorb efficiently even when the incident angle is as low as 20°. Full design procedure, simulation and measurement results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.