Abstract

AbstractThe block copolymer of polystyrene-block-polyacrylate-blockpolystyrene (PSt-PAA-PSt) has been synthesized by reversible addition fragmentation chain-transfer (RAFT) polymerization using S,S′-Bis(α,α′-dimethyl-α′′-acetic acid)-trithiocarbonate (BDATC) as chain transfer agent. Three copolymers form micelles in an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]). The nanostructures of the PSt-PAA-PSt micelles formed in ionic liquid were observed by transmission electron microscopy (TEM). The self-assembled morphologies of the micelles are strongly dependent on the length of PAA block chains when the chain length of PS is fixed. The affinity of PAA chains for water and [BMIM][PF6] reverses with increasing temperature. Research results show that the copolymer with low polydispersity can be obtained by controlling polymerization, and the flexibility of amphiphilic block copolymers for controlling nanostructure in an ionic liquid presents potential applications in many arenas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call