Abstract

Uniform poly-α-methylstyrene (PAMS) hollow core microcapsules (HCMs) are widely used as templates to fabricate glow discharge polymer (GDP) fuel capsules, which are fundamental devices for inertial confinement fusion (ICF) engineering. The sphericity and surface finish uniformity of PAMS HCMs are critical for achieving high-quality GDP fuel capsules. In this work, millimeter-scale PAMS HCMs were fabricated by a microencapsulation technique. The sphericity and surface finish uniformity were concurrently improved using di-t-butyl peroxide (DTBP). The mechanisms of these effects were also experimentally and theoretically investigated. The results show that DTBP distributes at the O-W2 interface of W1/O/W2 compound droplets, which resists the diffusion of molecules through the O-W2 interface bidirectionally. The resisted diffusion of H2O molecules into the O phase eliminates PAMS HCM surface defects. Additionally, the resistance of fluorobenzene (FB) molecules from diffusing from the O phase into the W2 phase can effectively extend the solidification of W1/O/W2 compound droplets and thus improve the spherical uniformity of the HCMs. Using these improved PAMS HCMs, GDP fuel capsules meeting the stringent requirements for ICF engineering are prepared, and the quality of which is beyond the National Ignition Facility standard.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.