Abstract

Semi-interpenetrating networks of poly(ethylene oxide) (PEO) and highly crosslinked poly(methacrylate)s were generated from solutions of PEO in mixtures of methacrylate monomers and dimethacrylate crosslinkers. The deep quenching of the solutions into the unstable region resulted in microphase separation via a spinodal decomposition mechanism. Through the crystallization of the PEO inside the polymer-rich phase, the domain size was reduced below the Cahn–Hilliard limit. The microstructure was permanently preserved by subsequent UV-initiated polymerization of the monomers well below the PEO melting temperature. The semi-interpenetrating networks were characterized by differential scanning calorimetry, small-angle X-ray scattering, NMR spin-diffusion measurements, and electron microscopy. Morphologies based on networks of cylindrical PEO aggregates with diameters of 10 ± 2 nm were observed, nearly independent of the molecular weight of the used PEO. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2041–2056, 2000

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.