Abstract

Diatoms produce diverse three-dimensional, regular silica structures with nanometer to micrometer dimensions and hold considerable promise for biological or biomimetic fabrication of nanostructured materials and devices. The unique hierarchical porous structure of diatom frustules is in particular attractive for membrane applications in microfluidic systems. In this paper, a procedure for pore size modifications of two centric diatom species, Coscinodiscus sp. and Thalassiosira eccentrica (T. eccentrica) using the atomic layer deposition (ALD) of ultrathin films of titanium oxide (TiO2) is described. TiO2 is deposited by sequential exposures to titanium chloride (TiCl4) and water. The modified diatom membranes were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDAX), and secondary ion mass spectrometry (SIMS). These techniques confirmed the controlled reduction of pore sizes while preserving the shape of the diatom membrane pores. Pore diameters of diatom membranes can be further tailored for specific applications by varying the number of cycles and by changing their surface functionality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.