Abstract

The contribution describes the transfer from a batch to a micro-continuous process for the production of stable solid lipid nanoparticles as drug carrier systems. Solid lipid nanoparticles are commonly prepared batch-wise often resulting in poorly defined product qualities with regard to the polymorphic state of their lipid matrix. In order to obtain solid lipid nanoparticle dispersions that meet the requirements for an acceptable pharmaceutical product, the manufacture of reproducible product qualities preferably containing the stable crystal form of the respective matrix lipid is necessary. These requests are addressed by the continuous preparation process of solid lipid nanoparticles. A four step feasibility study for the standardized evaluation whether or not a colloidal lipid dispersion is suitable for continuous crystallization of the particles resulting in stable crystal forms is presented. The process is based on the continuous crystallization and subsequent thermal treatment of differently stabilized, tripalmitin-based nanoparticle formulations in microstructured devices. The successful production of the stable crystal form by means of a continuous process chain is shown for a dispersion stabilized with a blend of hydrogenated soybean lecithin and sodium glycocholate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.