Abstract

AbstractAn important challenge in current microelectronics research is the development of techniques for making smaller, higher‐performance electronic components. In this context, the fabrication and integration of ultrathin high‐κ dielectrics with good insulating properties is an important issue. Here, we report on a rational approach to produce high‐performance nanodielectrics using one‐nanometer‐thick oxide nanosheets as a building block. In titano niobate nanosheets (TiNbO5, Ti2NbO7, Ti5NbO14), the octahedral distortion inherent to site‐engineering by Nb incorporation results in a giant molecular polarizability, and their multilayer nanofilms exhibit a high dielectric constant (160–320), the largest value seen so far in high‐κ nanofilms with thickness down to 10 nm. Furthermore, these superior high‐κ properties are fairly temperature‐independent with low leakage‐current density (<10−7 A cm−2). This work may provide a new recipe for designing nanodielectrics desirable for practical high‐κ devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.