Abstract
A surrounding electromagnetic environment can engineer spontaneous emissions from quantum emitters through the Purcell effect. For instance, a plasmonic antenna can efficiently confine an electromagnetic field and enhance the fluorescent process. In this study, we demonstrate that a photonic microcavity can modulate plasmon-enhanced fluorescence by engineering the local electromagnetic environment. Consequently, we constructed a plasmon-enhanced emitter (PE-emitter), which comprised a nanorod and a nanodiamond, using the nanomanipulation technique. Furthermore, we controlled a polystyrene sphere approaching the PE-emitter and investigated in situ the associated fluorescent spectrum and lifetime. The emission of PE-emitter can be enhanced resonantly at the photonic modes as compared to that within the free spectral range. The spectral shape modulated by photonic modes is independent of the separation between the PS sphere and PE-emitter. The band integral of the fluorescence decay rate can be enhanced or suppressed after the PS sphere couples to the PE-emitters, depending on the coupling strength between the plasmonic antenna and the photonic cavity. These findings can be utilized in sensing and imaging applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.