Abstract

Photoexcited electron extraction from semiconductors can be useful for converting solar energy into useful forms of energy. Although InP quantum dots (QDs) are considered alternative materials for solar energy conversion, the inherent instability of bare InP QDs demands the use of passivation layers such as ZnS for practical applications, which impedes carrier extraction from the QDs. Here, we demonstrate that Cu-doped InP/ZnS (InP/Cu:ZnS) QDs improve the electron transfer ability due to hole capture by Cu dopants. Steady-state and time-resolved photoluminescence studies confirmed that electrons were effectively transferred from the InP/Cu:ZnS QDs to a benzoquinone acceptor by retarding the electron-hole recombination within the QD. We evaluated the photocatalytic H2 evolution performance of InP/Cu:ZnS QDs under visible light, which showed outstanding photocatalytic H2 evolution activity and stability under visible light illumination. The photocatalytic activity was preserved even in the absence of a cocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.