Abstract

This paper presents the design of a novel testbed that effectively combines pulsed electric field waveforms, ultrasonic velocity, and magnetic field waveforms in an anodic dissolution electrochemical machining (ECM) cell. The testbed consists of a custom three-dimensional (3D)-printed flow cell that is integrated with (i) a bipolar-pulsed ECM circuit, (ii) an ultrasonic transducer, and (iii) a custom-built high-frequency electromagnet. The driving voltages of the ultrasonic transducer and electromagnet are calibrated to achieve a timed workpiece velocity and magnetic field, respectively, in the machining area. The ECM studies conducted using this testbed reveal that phase-controlled waveform interactions between the three assistances affect both the material removal rate (MRR) and surface roughness (Ra) performance metrics. The triad-assisted ECM case involving phase-specific combinations of all three high-frequency (15.625 kHz) assistance waveforms is found to be capable of achieving a 52% increase in MRR while also simultaneously yielding a 78% improvement in the Ra value over the baseline pulsed-ECM case. This result is encouraging because assisted ECM processes reported in the literature typically improve only one of these performance metrics at the expense of the other. In general, the findings reported in this paper are expected to enable the realization of multifield assisted ECM testbeds using phase-specific input waveforms that change on-the-fly to yield preferential combinations of MRR and surface finish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.