Abstract

Abstract Quasi-two-dimensional (quasi-2D) perovskites are increasingly explored for integration into light-emitting diodes (LEDs) as light-emissive layers. However, the quasi-2D perovskite films likely exhibit non-uniform dimensional phase distribution and irregular internal crystal structures. These characteristics are known to contribute to undesirable effects, including non-radiative recombination losses and radiative recombination in perovskites of various dimensions, impeding the realization of efficient electroluminescence and high color purity in LEDs. In this study, we present an investigation on the correlation between the dimensional distribution of quasi-2D perovskites and charge carrier behaviour by modulating anti-solvent dripping during the film fabrication processes. We provide a comprehensive analysis on the impact of controlled dimensional distribution on charge injection and recombination processes associated with performance of quasi-2D perovskite LEDs. Our work emphasizes the crucial role played by controlled dimensionality in quasi-2D perovskites in realizing efficient and stable perovskite-based LEDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call