Abstract

Consider a minimization problem of a convex quadratic function of several variables over a set of inequality constraints of the same type of function. The duel program is a maximization problem with a concave objective function and a set of constrains that are essentially linear. However, the objective function is not differentiable over the constraint region. In this paper, we study a general theory of dual perturbations and derive a fundamental relationship between a perturbed dual program and the original problem. Based on this relationship, we establish a perturbation theory to display that a well-controlled perturbation on the dual program can overcome the nondifferentiability issue and generate an ź-optimal dual solution for an arbitrarily small number ź. A simple linear program is then constructed to make an easy conversion from the dual solution to a corresponding ź-optimal primal solution. Moreover, a numerical example is included to illustrate the potential of this controlled perturbation scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.