Abstract

We report studies on the controlled step-by-step oxidative functionalization of monolayer graphene by chemically reactive water-vapor plasma dry etching. The use of a porous mask on top of the graphene sheets as a filter is essential to reduce the density of free radicals and weaken the sputtering effect. Micro-Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy showed that the oxidation occurred in a mild and controllable way, and that a wide variety of oxygen-containing functional groups can be evenly and incrementally incorporated onto the carbon lattice. By monitoring the electrical property changes in the graphene at different levels of oxidation, we observed a transformation of the electrical conduction process from continuum percolation to variable range hopping and/or electric-field-driven tunneling, due to the progressive increase of sp3-based basal plane distortion that disrupts the transport of carriers delocalized in the sp2 carbon network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.