Abstract
This paper investigates the onset of low-velocity, near-grazing collisions in an example vibro-impacting system with dry friction with particular emphasis on feedback control strategies that regulate the grazing-induced bifurcation behaviour. The example system is characterized by a twofold degeneracy of grazing contact along an extremal stick solution that is shown to result in a locally one-dimensional and piecewise-linear description of the near-grazing dynamics. Explicit control strategies are derived that ensure a persistent, low-impact-velocity, steady-state response across the critical parameter value corresponding to grazing contact even in instances where the dynamics in the absence of control exhibit a sudden transition to a high-impact-velocity response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.