Abstract

Fine, equiaxed copper particles have been obtained by reduction of CuO in ethylene glycol. Cu2O always exists as an intermediate solid phase. Copper particles with a narrow size distribution within the micrometee range can be obtained if the nucleation and growth steps are completely separated and if agglomeration is avoided. Addition of D-sorbitol, which acts as a protective agent, prevents particle sintering. Addition of a strong base, e.g. NaOH, enhances the solubility of the precursor CuO and of the intermediate Cu2O. Under these conditions the overall reaction appears to be controlled by the nucleation and growth steps of the metallic particles. Their mean size can be largely controlled by varying the NaOH concentration. The synthesis of copper particles in liquid polyols, which act as both solvent and reducing agent, is a simple method for producing highly pure, equiaxed, non-agglomerated monodisperse particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.