Abstract

Photoelectrochemical etching of uniform prestructured silicon wafers in hydrofluoric acid containing solutions yields periodic structures that can be applied to two- and three-dimensional photonic crystals or microfluidics. Here we demonstrate experimentally macroporous silicon etching initiated by a nonuniform predefined lattice. For conveniently chosen parameters we observe a stable growth of pores whose geometrical appearance depends strongly on the spatially different nucleation conditions. Moreover, we show preliminary results on three-dimensionally shaped pores. This material can be used to realize hybrid photonic crystal structures and incorporate waveguides in three-dimensional photonic crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call