Abstract

This paper describes a technique to control the navigation of traditional wireless endoscopic capsules and reports preliminary proof-of-concept investigations. These capsules are used for noninvasive explorations of the digestive tube. At present, their motion cannot be controlled and they proceed by means of the visceral peristalsis. In order to enable motion controls, the technique proposed here adopts magnetic shells which are to be applied to available capsules, immediately before their use. The shells are used to control the capsule movement by means of external magnetic fields. This solution is readily applicable to any endoscopic capsule, avoiding internal modifications. Prototype elastic shells made of silicone elastomers mixed with magnetic particles were fabricated. They were tested with the most diffused capsule (model M2A, Given Imaging Ltd., Yoqneam, Israel), by studying the performance of the capsule/shell complex in simplified experimental conditions. Bench tests permitted to demonstrate controlled translations, rotations, and rototranslations of the capsule/shell complex within tubular structures coated with pieces of bovine tissues. The use of a new instrumentation, recently developed for cardiovascular treatments, is proposed as a potential means enabling the application of controlled magnetic fields for intrabody navigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call