Abstract

Abstract This review introduces recent advances in the fabrication of metal nanostructures via self-assembly with a particular focus on our studies. As nanostructures, in particular metal nanostructures, show unique properties which are not observed in bulk materials, the development of nanofabrication techniques has attracted much attention in the research fields of nanoscience and nanotechnologies. From the viewpoint of biomimetics, it is imagined that sophisticated structures with spatio-temporal controllability on a nanoscale are crucial. Thus, much effort has been paid to the fabrication of 3- and 4-dimensional metal nanostructures. Although there are various approaches, the most promising is the self-assembly of gold nanoparticles (AuNPs) and their combination with soft matters. To obtain further controlled nanostructures for better properties, their systems have become more and more complex. For future expansion of these technologies, simplified systems are preferable for refining them based on clear mechanisms. From this point of view, we have worked on the self-assembly of AuNPs modified with oligo(ethylene glycol) (OEG)-derivatives as a small, simple molecule with a definite chemical structure and fabricated 3D hollow capsule structures and reversibly changeable structures responding to certain stimuli in solution and on/in soft matters. These results are expected to support the creation of novel nanodevices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.