Abstract

Microsystems play an important role in many biological and environmental applications. The integration of electrical interfaces into such miniaturized systems provides new opportunities for electrochemical sensing where high sensitivity and selectivity towards the analyte are requested. This can be only achieved upon controlled functionalization of the working electrode, a challenge for compact microsystems. In this work, we demonstrate the benefit of electrophoretic deposition (EPD) of reduced graphene oxide/polyethylenimine (rGO/PEI) for the selective modification of a gold (Au) microelectrode in a microsystem comprising a Pt counter and a Ag/AgCl reference electrode. The functionalized microsystem was successfully applied for the sensing of dopamine with a detection limit of 50nM. Additionally, the microsystem exhibited good performance for the detection of dopamine levels in meat samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.