Abstract
We present experimental results on the scattering of electromagnetic waves at millimeter‐wave frequencies from one‐dimensional very rough conducting surfaces with controlled surface roughness statistics. Very rough surfaces are defined as surfaces with rms height and correlation length of the order of a wavelength such that the rms slope is at least unity. It is expected that scattering experiments using these surfaces can provide useful insights since their statistics lie outside the range of validity of the present theories, namely, the Kirchhoff and perturbation theories. Strong backscattering enhancement at different incident angles, both in the transverse electric and transverse magnetic polarizations, are observed experimentally. Numerical calculations based on the exact integral equation method for cylindrical beam wave illumination compare favorably with the experimental results. The agreement between measurements and numerical calculations is good over a wide range of incident angles and for all scattering angles. The close agreement between the experimental results and numerical simulations indicates that this controlled experimental setup can be used to study scattering phenomena from one‐dimensional very rough surfaces with different roughness statistics as well as from two‐dimensional rough surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.