Abstract

There is an increasing interest in the use of automation in plant production settings. Here, we employed a robotic platform to induce controlled mechanical stimuli (CMS) aiming to improve basil quality. Semi-targeted UHPLC-qToF-MS analysis of organic acids, amino acids, phenolic acids, and phenylpropanoids revealed changes in basil secondary metabolism under CMS, which appear to be associated with changes in taste, as revealed by different means of sensory evaluation (overall liking, check-all-that-apply, and just-about-right analysis). Further network analysis combining metabolomics and sensory data revealed novel links between plant metabolism and sensory quality. Amino acids and organic acids including maleic acid were negatively associated with basil quality, while increased levels of secondary metabolites, particularly linalool glucoside, were associated with improved basil taste. In summary, by combining metabolomics and sensory analysis we reveal the potential of automated CMS on crop production, while also providing new associations between plant metabolism and sensory quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.