Abstract

We study controlled Markov chains with denumerable state space and bounded costs per stage. A (long-run) risk-sensitive average cost criterion, associated to an exponential utility function with a constant risk sensitivity coefficient, is used as a performance measure. The main assumption on the probabilistic structure of the model is that the transition law satisfies a simultaneous Doeblin condition. Working within this framework, the main results obtained can be summarized as follows: If the constant risk-sensitivity coefficient is small enough, then an associated optimality equation has a bounded solution with a constant value for the optimal risk-sensitive average cost; in addition, under further standard continuity-compactness assumptions, optimal stationary policies are obtained. However, it is also shown that the above conclusions fail to hold, in general, for large enough values of the risk-sensitivity coefficient. Our results therefore disprove previous claims on this topic. Also of importance is the fact that our developments are very much self-contained and employ only basic probabilistic and analysis principles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.