Abstract

A novel scanning tunneling microscope manipulation scheme for a controlled molecular transport of weakly adsorbed molecules is demonstrated. Single sexiphenyl molecules adsorbed on a Ag(111) surface at 6 K are shot towards single silver atoms by excitation with the tip. To achieve atomically straight shooting paths, an electron resonator consisting of linear standing-wave fronts is constructed. The sexiphenyl manipulation signals reveal a pi ring flipping as the molecule moves from the hcp to fcc site. Ab initio calculations show an incorporation of the Ag atom below the center of a pi ring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call