Abstract

ABSTRACT Retaining walls are a part of the geotechnical construction industry for the support of structures from soil erosion. Granular materials are conventionally used as backfill behind retaining walls. Instead of the conventional compacted granular fill, other industrial by-products are also used nowadays. The utilisation of these industrial by-products for Civil engineering applications helps to build a sustainable environment by reducing the waste depositions. In this paper, an experimental study was conducted to evaluate the properties of coal ash-based Controlled Low Strength Materials (CLSM) for backfill applications. The properties of pond ash-based CLSM mixes were studied to identify the effectiveness in utilising CLSM for backfill applications. Further, numerical analysis using PLAXIS 2D was carried out to evaluate the stresses and displacements developed in retaining walls for different backfilling materials. It was observed that CLSM mixes exhibit the properties required for utilising it as a backfill material. The stresses and deformations developed in situations where CLSM was used were found to be negligible compared to the normal compacted backfill materials. Thus, the studies on CLSM mixes showed that pond ash can be used as a replacement to natural aggregates which can be used as a backfill for retaining wall applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call