Abstract

Nanophotonic devices, such as waveguides and cavities, can strongly enhance the interaction of light with graphene. We describe techniques for enhancing the interaction of photons with graphene using chip-integrated nanophotonic devices. Transferring single-layer graphene onto planar photonic crystal nanocavities enables a spectrally selective, order-of-magnitude enhancement of optical coupling with graphene, as shown by spectroscopic studies of cavity modes in visible and infrared spectral ranges. We observed dramatically cavity-enhanced absorption, hot photoluminescence emission, and Raman scattering of the monolayer graphene. We also described a broad-spectrum enhancement of the light-matter interaction by coupling graphene with a bus waveguide on a silicon-on-insulator photonic integrated circuit, which enables a 6.2-dB transmission attenuation due to the graphene absorption over a waveguide length of 70 μm. By electrically gating the graphene monolayer coupled with a planar photonic crystal nanocavity, electrooptic modulation of the cavity reflection was possible with a contrast in excess of 10 dB. Moreover, a novel modulator device based on the cavity-coupled graphene-boron nitride-graphene capacitor was fabricated, showing a modulation speed up to 0.57 GHz. These results indicate the applications of graphene-cavity devices in high-speed and high-contrast modulators with low energy consumption. The integration of graphene with nanophotonic architectures promises a new generation of compact, energy-efficient, and ultrafast electrooptic graphene devices for on-chip optical communications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.