Abstract

In this paper, a new treatment method based on molecular self-assembly on carbon fiber surface was proposed for obtaining a controlled interface between carbon fiber and epoxy matrix in composite system. To form the controlled interfacial region, the surfaces of carbon fibers were first metallized by electroless Ag plating, then were reacted with a series of thiols (different chain lengths and terminally functional groups) to form self-assembly monolayers (SAMs), which further reacted with epoxy resin to generate a strong adhesion interface. The morphology, structure and composition of untreated and treated carbon fiber surface were investigated by atomic force microscope (AFM), surface-enhanced Raman scattering spectroscopy (SERS) and X-ray photoelectron spectroscopy (XPS), respectively. SERS study showed that thiols chemisorbed on Ag/carbon fiber in the form of thiolate species via the strong S–Ag coordinative bond. XPS study further confirmed the chemisorption by an S 2p 3/2 component observed at 162.2 eV. The binding energy was characteristic of silver thiolate. The interfacial shear strength of the carbon fiber/epoxy microcomposites was evaluated by the microbond technique. The results showed that there was a direct effect of the interfacial parameters changes such as chain lengths and surface functional groups on the fiber/matrix adhesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.