Abstract

Validation of models for short crack behavior requires accurate measurement of crack opening displacement and crack tip strain fields. Development of reliable measurement procedures, using new techniques such as Image Correlation (IC), requires specimens containing cracks with a well defined geometry. In this paper, results of an experimental study concerning controlled initiation of short fatigue cracks at positive R-ratio in laboratory specimens made from 316L stainless steel are presented. Experimental techniques, including hardness testing and X-ray diffraction were employed in order to investigate the effect of surface preparation on the surface mechanical properties and residual stresses. Crack nucleation is difficult in smooth specimens of 316L austenitic stainless steel at positive R-ratio due to the high fatigue limit and low tensile strength. Specimens with a thin ligament were therefore developed to enable nucleation of a single short fatigue crack. An experimental study of the crack growth aspect ratio evolution was then carried out using a beach marking technique. The technique described in this paper enables single short fatigue cracks of well defined geometry to be nucleated under tensile cyclic loading. Stress corrosion cracks can be developed using the same specimen geometry. Miniature tensile specimens can then be extracted to perform in-situ measurements of the crack opening displacement and crack tip strain field by Image Correlation from Scanning Electron Microscopy observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.