Abstract

We show how a nonlocal and open-target destination quantum controlled-Not (CNOT) gate can be probabilistically implemented by using partially entangled pairs of particles. We first investigate the controlled implementation of a nonlocal and three-target destination CNOT gate using three partially entangled pairs, and then generalize the scheme to the case of N-target destination. In this scheme, Alice’s local generalized measurement described by a positive operator valued measurement (POVM) plays a key role. We construct the required POVM. It is worth noting that deterministic and exact implementation of a nonlocal CNOT gate can be realized using partially entangled pairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.