Abstract

Pickering emulsions represent a promising avenue in the field of controlled drug delivery systems. Recently, cellulose nanofibers (CNFs) and chitosan nanofibers (ChNFs) have gained interest as eco-friendly stabilizers for Pickering emulsions, yet their application in pH-responsive drug delivery systems remains unexplored. However, the potential of these biopolymer complexes in formulating stable, pH-responsive emulsions for controlled drug release is of significant interest. Here, we show the development of a highly stable, pH-responsive fish oil-in-water Pickering emulsion stabilized by ChNF/CNF complexes, with optimal stability achieved at a 0.2 wt% ChNF concentration and an average emulsion particle size of approximately 4 μm. Our results demonstrate long-term stability (16 days of storage) for ChNF/CNF-stabilized emulsions, with the interfacial membrane's pH modulation facilitating controlled, sustained ibuprofen (IBU) release. Furthermore, we observed a remarkable release of approximately 95 % of the embedded IBU within the pH range of 5–9, while the drug loading and encapsulation efficiency of the drug-loaded microspheres reached their peak at a 1 % IBU dosage, with values of 1 % and 87 %, respectively. This study highlights the potential of using ChNF/CNF complexes in designing versatile, stable, and entirely renewable Pickering systems for controlled drug delivery, with potential applications in food and eco-friendly products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call